TWO POSSIBLE CIRCUMBINARY PLANETS IN THE ECLIPSING POST-COMMON ENVELOPE SYSTEM NSVS 14256825*

L. A. Almeida, F. Jablonski, and C. V. Rodrigues

Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, São José dos Campos-SP, Brazil; leonardo@das.inpe.br Received 2012 October 10; accepted 2013 January 29; published 2013 March 1

ABSTRACT

We present an analysis of eclipse timings of the post-common envelope binary NSVS 14256825, which is composed of an sdOB star and a dM star in a close orbit ($P_{\rm orb}=0.110374$ days). High-speed photometry of this system was performed between 2010 July and 2012 August. Ten new mid-eclipse times were analyzed together with all available eclipse times in the literature. We revisited the (O-C) diagram using a linear ephemeris and verified a clear orbital period variation. On the assumption that these orbital period variations are caused by light travel time effects, the (O-C) diagram can be explained by the presence of two circumbinary bodies, even though this explanation requires a longer baseline of observations to be fully tested. The orbital periods of the best solution would be $P_c \sim 3.5$ years and $P_d \sim 6.9$ years. The corresponding projected semi-major axes would be $P_c \sim 1.9$ AU and $P_c \sim 1.9$ AU. The masses of the external bodies would be $P_c \sim 1.9$ M_{Jupiter} and $P_c \sim 1.9$ AU and $P_c \sim 1.9$ AU. The masses of the external bodies would be $P_c \sim 1.9$ AU are corresponded to the correspondence of the correspo

Key words: binaries: close – binaries: eclipsing – planetary systems – stars: individual (NSVS 14256825) – subdwarfs

Online-only material: color figures

1. INTRODUCTION

Planetary formation and evolution around binary systems have become important topics since the discovery of the first exoplanet around the binary pulsar PSR B1620-26 (Backer et al. 1993). Theoretical studies have indicated that circumbinary planets can be formed and survive for a long time (Moriwaki & Nakagawa 2004; Quintana & Lissauer 2006). Characterization of such planets in different evolutionary stages of the host binary is crucial to constrain and test the formation and evolution models.

The common envelope (CE) phase in binary systems is dramatic for the planets survival. For a single star, Villaver & Livio (2007) have pointed out that planets more massive than two Jupiter masses around a main-sequence star of $1\,M_\odot$ survive the planetary nebula stage down to orbital distances of 3 AU. The CE phase in binary systems is more complex than the nebular stage in single stars and its interaction with existing planets is still an open topic. Besides, a second generation of planets can be formed from a disk originated by the ejected envelope (van Winckel et al. 2009; Perets 2011). The investigation of circumbinary planets in post-CE phase systems is fundamental to constrain observationally the minimum host binary–planet separation and to distinguish between planetary formation before and after the CE phase.

To date, circumbinary planets have been discovered in seven eclipsing post-CE binaries. All those discoveries were made using the eclipse timing variation technique. The main features of these planets are summarized in Table 1, which also shows the results for NSVS 14256825 presented in this paper.

NSVS 14256825 (hereafter referred to as NSVS 1425) is an eclipsing post-CE binary and consists of an sdOB star plus a dM star with an orbital period of 0.110374 days (Almeida et al.

2012). It was discovered using the Northern Sky Variability Survey (Woźniak et al. 2004). Kilkenny & Koen (2012) showed that the orbital period in NSVS 1425 is increasing at a rate of $\sim 1.1 \times 10^{-10} \, \mathrm{s \, s^{-1}}$. Beuermann et al. (2012a) presented additional eclipse timings of NSVS 1425 and suggested from an analysis of the (O-C) diagram the presence of a circumbinary planet of $\sim 12 \, M_{\mathrm{Jupiter}}$.

In this study, we present 10 new mid-eclipse times of NSVS 1425 obtained between 2010 July and 2012 August. We combined these data with previous measurements from the literature and performed a new orbital period variation analysis. In Section 2, we describe our data as well as the reduction procedure. The methodology used to obtain the eclipse times and the procedure to examine the orbital period variation are presented in Section 3. In Section 4, we discuss our results.

2. OBSERVATIONS AND DATA REDUCTION

The observations of NSVS 1425 are part of a program to search for eclipse timing variations in compact binaries. This project is being carried out using the facilities of the *Observatório do Pico dos Dias*/Brazil, which is operated by the *Laboratório Nacional de Astrofísica*. Photometric observations were performed using CCD cameras attached to the 0.6 m and 1.6 m telescopes. Typically 100 bias frames and 30 dome flat-field images were collected each night to correct systematic effects from the CCD data. The photometric data are summarized in Table 2.

The data reduction was performed using IRAF¹ tasks (Tody 1993) and consists of subtracting a master median bias image from each program image, and dividing the result by a normalized flat-field frame. Differential photometry was used to

^{*} Based on observations carried out at the Observatório do Pico dos Dias (OPD/LNA) in Brazil.

¹ IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

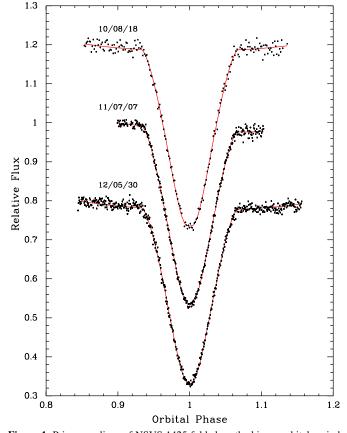
Table 1
Circumbinary Planets Discovered in Post-common Envelope Systems

Name	$P_{\rm orb}$ (days)	$M_{\rm p} \sin i$ $(M_{\rm Jupiter})$	$a \sin i$ (AU)	e	Spec. Type	References
NSVS 1425(AB)c	1276	2.9	1.9	0.0	sdOB+dM	This study
UZ For(AB)c	1917	7.7	2.8	0.05	DA+dM (Polar)	1
HU Aqr(AB)c	2226	4.5	3.32	0.11	DA+dM (Polar)	2
NSVS 1425(AB)d	2506	8.0	2.9	0.52	sdOB+dM	This study
NN Ser(AB)c	2605	4.0	3.2	0.05	DA+dM	3
NY Vir(AB)c	2900	2.3	3.3		sdB+dM	4
RR Cae(AB)c	4346	4.2	5.3	0.0	DA+dM	5
HW Vir(AB)c	4640	14.0	4.69	0.4	sdB+dM	6
HU Aqr(AB)d	5155	5.7	5.81	0.04	DA+dM (Polar)	2
NN Ser(AB)d	5571	6.71	5.32	0.22	DA+dM	3
UZ For(AB)d	5844	6.3	5.9	0.04	DA+dM (Polar)	1
DP Leo(AB)c	10227	6.05	8.18	0.39	DA+dM (Polar)	7

References. (1) Potter et al. 2011; (2) Hinse et al. 2012; (3) Horner et al. 2012; (4) Qian et al. 2012b; (5) Qian et al. 2012a; (6) Beuermann et al. 2012b; (7) Beuermann et al. 2011.

Table 2
Log of the Photometric Observations

Date	N	$t_{\rm exp}$	Telescope	Filter
		(s)		
2010 Jul 30	300	20	0.6 m	R_C
2010 Jul 31	450	20	0.6 m	R_C
2010 Aug 18	800	10	0.6 m	R_C
2010 Nov 20	350	20	0.6 m	I_C
2011 Jul 6	1255	2	1.6 m	I_C
2011 Jul 7	1300	1	1.6 m	Clear
2011 Aug 6	435	5	1.6 m	V
2012 Apr 24	1550	1.5	0.6 m	Clear
2012 May 30	600	3	0.6 m	Clear
2012 Aug 12	1330	2	1.6 m	I_C


obtain the flux ratio between the target and a field star of assumed constant flux. As the NSVS 1425 field is not crowded, flux extraction was performed using aperture photometry. This procedure was repeated several times using different apertures and sky ring sizes to select the combination that provides the best signal-to-noise ratio. Figure 1 shows three normalized light curves folded on the NSVS 1425 orbital period.

3. ANALYSIS AND RESULTS

3.1. Eclipse Fitting

To obtain the mid-eclipse times for NSVS 1425, we generated model light curves using the Wilson–Devinney code (WDC; Wilson & Devinney 1971) and searched for the best fit to the observed data. We used mode 2 of the WDC, which is appropriate to detached systems. The luminosity of each component was computed assuming stellar atmosphere radiation. The linear limb darkening coefficients, x_i , were used for both components. For the unfiltered light curves, V-band limb darkening was used. The ranges of the geometrical and physical parameters (e.g., inclination, radii, temperatures, and masses) obtained by Almeida et al. (2012) for NSVS 1425 were adopted as the search intervals in the fit.

A method similar to that described in Almeida et al. (2012) was used for the fitting procedure. The WDC was used as a "function" to be optimized by the genetic algorithm PIKAIA (Charbonneau 1995). To measure the goodness of fit, we use the

Figure 1. Primary eclipse of NSVS 1425 folded on the binary orbital period. The solid line represents the best fitting performed with the Wilson–Devinney code (see Section 3). The upper and lower light curves were displaced vertically 0.2 units for better visualization.

(A color version of this figure is available in the online journal.)

reduced χ^2_{red} defined as

$$\chi_{\text{red}}^2 = \frac{1}{n} \sum_{j=1}^n \left(\frac{O_j - C_j}{\sigma_j} \right)^2, \tag{1}$$

where O_j are the observed points, C_j are the corresponding models, σ_j is the uncertainty at each point, and n is the number of points. Figure 1 shows three eclipses of NSVS 1425

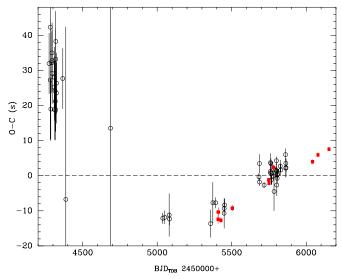


Figure 2. (O - C) diagram of the eclipse timings of NSVS 1425 made using Equation (2). Our data are presented with filled squares.

(A color version of this figure is available in the online journal.)

and the corresponding best solutions. To establish realistic uncertainties, we used the solution obtained by PIKAIA as input to a Markov Chain Monte Carlo (MCMC) procedure (Gilks et al. 1996) and examined the marginal posterior distribution of probability of the parameters. The mid-eclipse times and corresponding uncertainties were obtained from the median value of the marginal distribution of the fitted times and the 1σ uncertainties from the corresponding 68% area under the distribution. The results are presented in Table 3, together with previously published timings.

3.2. Linear Ephemeris

To determine an ephemeris for the NSVS 1425 orbital period, we analyzed our measurements together with all available eclipse times in the literature after converting them to barycentric dynamical time (TDB). Table 3 shows all eclipse times available for NSVS 1425. Fitting the data using a linear ephemeris, $T_{\rm min} = T_0 + E \times P_{\rm bin}$, we obtain

$$T_{\text{min}} = \text{TDB } 2454274.2086(1) + 0.110374165(1) \times E,$$
 (2)

where $T_{\rm min}$ are the predicted eclipse times, T_0 is a fiducial epoch, E is the cycle count from T_0 , and $P_{\rm bin}$ is the binary orbital period. The best fit yields a $\chi^2_{\rm red} \sim 46$. The residuals of the observed times with respect to Equation (2) are shown in the (O-C) diagram of Figure 2.

3.3. Eclipse Timing Variation

Figure 2 shows that a linear ephemeris is far from correctly predicting the NSVS 1425 eclipse times. The large value of χ^2_{red} suggests the presence of additional signals in the (O-C) diagram. One possible explanation is the light travel time (LTT) effect, which is explored in this paper.

The LTT effect shows up as a periodic variation in the observed eclipse times when the distance from the binary to the observer varies due to gravitational interaction between the inner binary and an external body (Irwin 1952). To fit the NSVS 1425 eclipse times taking this effect into account, we

Table 3
Eclipse Times for NSVS 1425

(S) 1	Eclipse Times for NSVS 1425				
72	Cycle	Time (BJD-TDB)		Eclipse	Reference
73	1	2454274.2088(1)	9.0	I	1
108	72	2454282.1559(2)	19.4	I	1
172		` '			
180		* /			
181 2454294.1866(1) 12.1 I 1 190 2454295.1799(1) 6.2 I 1 316 2454309.0870(1) -2.3 I 1 317 2454309.1973(1) -4.1 I 1 325 2454314.1642(1) 1.3 I 1 380 2454314.1642(1) 1.3 I 1 387 2454318.0274(1) 10.3 I 1 406 2454319.1312(1) 15.4 I 1 407 2454319.1312(1) 15.4 I 1 443 2454323.1045(1) 0.7 I 1 443 2454322.0979(1) 3.5 I 1 442 245323.00979(1) 4.7 I 1 424 245336.693(6) -29.6 I 2 3737 245686.699(5) -8.8 I 2 6914 2455037.33534(2) -34.0 I 2 7373 2455080.331					
190		* *			
316		* /			
317		` '			
362	317	* /	-4.1	I	1
380	325	2454310.0804(1)	5.1	I	1
397	362	2454314.1642(1)	1.3		
406 2454319.0206(1) -4.2 I 1 407 2454319.1312(1) 15.4 I 1 443 2454323.0145(1) 0.7 I 1 452 2454324.0979(1) 3.5 I 1 832 2454366.0401(1) 4.9 I 1 1018 245486.6769(5) -8.8 I 2 6914 2455037.33534(2) -34.0 I 2 7337 2455050.91137(2) -33.7 I 2 7332 2455082.36800(2) -34.1 I 2 9823.5 2455338.46897(5) -35.0 II 2 9823.5 2455338.46897(5) -35.0 II 2 9823.5 2455408.74442(2) -33.7 I This study 10287 2455408.74442(2) -33.7 I This study 10451 2455409.62744(2) -31.7 I This study 10451 2455409.62744(2) -31.7 I This					
407 2454319.1312(1) 15.4 I 1 443 2454323.1045(1) 0.7 I 1 452 2454324.0979(1) 3.5 I 1 832 2454366.0401(1) 4.9 I 1 1018 2454386.5693(6) -29.6 I 2 3737 2454686.6769(5) -8.8 I 2 6914 2455037.33534(2) -34.0 I 2 7037 2455080.38128(7) -33.0 I 2 7322 2455082.36800(2) -34.1 I 2 9823.5 2455358.46897(5) -35.0 II 2 9823.5 2455353.42474(7) -29.1 I 2 10279 2455408.74442(2) -33.7 I This study 10287 2455409.62744(2) -31.7 I This study 10451 2455427.72877(1) -34.0 I This study 10451 2455449.25176(5) -31.9 I 3 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
443		* /			
452		* *			
832 2454366.0401(1) 4.9 I 1 1 1018 2454386.5693(6) -29.6 I 2 3737 2454686.6769(5) -8.8 I 2 6914 2455037.33534(2) -34.0 I 2 7304 2455080.38128(7) -33.0 I 2 7302 2455082.36800(2) -34.1 I 2 9823.5 2455385.46897(5) -35.0 II 2 9959 2455373.42474(7) -29.1 I 2 10131 2455392.40910(2) -29.0 I 2 10279 2455408.74442(2) -33.7 I This study 10287 2455409.62744(2) -31.7 I This study 10451 245549.36215(2) -30.0 I 3 10647 245549.25176(5) -31.9 I 3 110673 2455682.2189(2) -29.6 I 3 11146.5 2455682.91400(2) -22.7		* /			
1018					
3737 2454686.6769(5) -8.8 I 2 6914 2455037.33534(2) -34.0 I 2 7037 2455050.91137(2) -33.7 I 2 7304 2455080.38128(7) -33.0 I 2 7322 2455082.36800(2) -34.1 I 2 9823.5 2455358.46897(5) -35.0 II 2 9959 2455373.42474(7) -29.1 I 2 10131 2455392.40910(2) -29.0 I 2 10279 2455408.74442(2) -33.7 I This study 10287 2455409.62744(2) -31.7 I This study 10451 2455409.62744(2) -31.7 I This study 10464 2455449.25176(5) -31.9 I 3 10647 2455427.72877(1) -34.0 I This study 10647 2455449.26176(5) -31.9 I 3 1164.5 2455449.36215(2) -22.7		* *			
7037 2455050.91137(2) -33.7 I 2 7304 2455080.38128(7) -33.0 I 2 7322 2455082.36800(2) -34.1 I 2 9823.5 2455358.46897(5) -35.0 II 2 9959 2455373.42474(7) -29.1 I 2 10131 2455392.40910(2) -29.0 I 2 10279 2455409.62744(2) -31.7 I This study 10287 2455409.62744(2) -31.7 I This study 10451 245549.25176(5) -31.9 I 3 10646 2455449.25176(5) -31.9 I 3 10647 2455449.36215(2) -30.6 I 3 10673 2455452.23189(2) -29.6 I 3 1146.5 2455682.91400(2) -21.2 I 2 12799 2455686.88745(2) -22.7 I 2 12799.5 2455686.94270(3) -17.4 II		* /			
7304 2455080.38128(7) -33.0 I 2 7322 2455082.36800(2) -34.1 I 2 9823.5 2455373.42474(7) -29.1 I 2 10131 2455373.42474(7) -29.0 I 2 10279 2455408.74442(2) -33.7 I This study 10287 2455409.62744(2) -31.7 I This study 10451 2455427.72877(1) -34.0 I This study 10646 2455449.25176(5) -31.9 I 3 10647 2455449.36215(2) -30.6 I 3 10673 2455452.23189(2) -29.6 I 3 11146.5 24555449.36215(2) -30.6 I 3 112763 2455682.91400(2) -29.6 I 3 1146.5 2455504.49405(1) -30.4 II This study 13077 2455762.9353(2) -22.7 I 2 12799.5 245568.8974(2) -22.7 <td></td> <td>2455037.33534(2)</td> <td>-34.0</td> <td>I</td> <td>2</td>		2455037.33534(2)	-34.0	I	2
7322	7037	2455050.91137(2)	-33.7	I	2
9823.5	7304	2455080.38128(7)	-33.0	I	2
9959	7322	2455082.36800(2)	-34.1		
10131		, ,			
10279 2455408.74442(2) -33.7 I This study 10287 2455409.62744(2) -31.7 I This study 10451 2455427.72877(1) -34.0 I This study 10646 2455449.25176(5) -31.9 I 3 10647 2455449.36215(2) -30.6 I 3 10673 2455452.23189(2) -29.6 I 3 11146.5 24555449.2617(3) -30.4 II This study 12763 2455682.91400(2) -21.2 I 2 12799 2455686.88745(2) -22.7 I 2 12799.5 2455686.94270(3) -17.4 II 2 13077 2455714.660(1) -23.5 I 3 13368 2455749.690361(6) -22.0 I This study 13377 2455750.83717(4) -23.0 I This study 13469 2455760.89340(3) -17.1 II 2 13469.5 2455760.89340(3) <td></td> <td>` '</td> <td></td> <td></td> <td></td>		` '			
10287 2455409.62744(2) -31.7 I This study 10451 2455427.72877(1) -34.0 I This study 10646 2455449.36215(2) -30.6 I 3 10647 2455449.36215(2) -30.6 I 3 10673 2455452.23189(2) -29.6 I 3 11146.5 2455544.49405(1) -30.4 II This study 12763 2455682.91400(2) -21.2 I 2 12799 2455686.88745(2) -22.7 I 2 12799.5 2455686.894270(3) -17.4 II 2 13077 2455714.690361(6) -22.0 I This study 13378 2455749.690361(6) -22.0 I This study 13469 2455778.498061(9) -18.3 I This study 13469 2455760.89340(3) -17.1 II 2 13470 2455760.94855(1) -20.0 I 2 13488 2455762.93532(2)<		, ,			
10451 2455427.72877(1) -34.0 I This study 10646 2455449.25176(5) -31.9 I 3 10647 2455449.36215(2) -30.6 I 3 10673 2455452.23189(2) -29.6 I 3 11146.5 2455504.49405(1) -30.4 II This study 12763 2455682.91400(2) -21.2 I 2 12799 2455686.88745(2) -22.7 I 2 12799.5 2455686.94270(3) -17.4 II 2 13077 2455717.57146(1) -23.5 I 3 13368 2455749.690361(6) -22.0 I This study 13377 2455750.683717(4) -23.0 I This study 13469 2455760.89340(3) -18.3 I This study 13469.5 2455760.89340(3) -17.1 II 2 13488 2455762.93532(2) -17.3 I 2 13488 2455784.89549(4)		, ,			•
10646 2455449.25176(5) -31.9 I 3 10647 2455449.36215(2) -30.6 I 3 10673 2455452.23189(2) -29.6 I 3 11146.5 2455504.49405(1) -30.4 II This study 12763 2455682.91400(2) -21.2 I 2 12799.5 2455686.88745(2) -22.7 I 2 12799.5 2455686.94270(3) -17.4 II 2 13077 2455717.57146(1) -23.5 I 3 13368 2455749.690361(6) -22.0 I This study 13377 2455750.683717(4) -23.0 I This study 13469 2455760.89340(3) -17.1 II 2 13469 2455760.94855(1) -20.0 I 2 13470 2455760.94855(1) -20.0 I 2 13488 2455762.93532(2) -17.3 I 2 13542 2455765.47387(2) -20.0					•
10647 2455449.36215(2) -30.6 I 3 10673 2455452.23189(2) -29.6 I 3 11146.5 24555452.23189(2) -29.6 I 3 12763 2455682.91400(2) -21.2 I 2 12799 2455686.88745(2) -22.7 I 2 12799.5 2455686.94270(3) -17.4 II 2 13077 2455717.57146(1) -23.5 I 3 13368 2455749.690361(6) -22.0 I This study 13377 2455750.683717(4) -23.0 I This study 13629 2455778.498061(9) -18.3 I This study 13469 2455760.83818(3) -19.6 I 2 13469 2455760.9340(3) -17.1 II 2 13470 2455762.93532(2) -17.3 I 2 13488 2455762.93532(2) -17.3 I 2 13511 2455765.47387(2) -22.0		* *			•
10673 2455452.23189(2) -29.6 I 3 11146.5 2455504.49405(1) -30.4 II This study 12763 2455682.91400(2) -21.2 I 2 12799 2455686.88745(2) -22.7 I 2 12799.5 2455686.94270(3) -17.4 II 2 13077 24557717.57146(1) -23.5 I 3 13368 2455749.690361(6) -22.0 I This study 13377 2455750.683717(4) -23.0 I This study 13629 2455778.498061(9) -18.3 I This study 1369 2455760.83818(3) -19.6 I 2 13469 2455760.89340(3) -17.1 II 2 13470 2455760.94855(1) -20.0 I 2 13488 2455762.93532(2) -17.3 I 2 13511 2455768.89549(4) -20.0 I 2 13682 2455788.82915(1) -2		* *			
12763 2455682.91400(2) -21.2 I 2 12799 2455686.88745(2) -22.7 I 2 12799.5 2455686.94270(3) -17.4 II 2 13077 2455717.57146(1) -23.5 I 3 13368 2455749.690361(6) -22.0 I This study 13377 2455750.683717(4) -23.0 I This study 13629 2455778.498061(9) -18.3 I This study 13469.5 2455760.83818(3) -19.6 I 2 13469.5 2455760.89340(3) -17.1 II 2 13470 2455760.99352(2) -17.3 I 2 13488 2455762.93532(2) -17.3 I 2 13511 2455765.47387(2) -22.0 I 2 13542 2455768.89549(4) -20.0 I 2 13682 2455784.34781(7) -25.2 I 2 13682 2455783.8006(1) -19.2	10673	2455452.23189(2)	-29.6	I	3
12799 2455686.88745(2) -22.7 I 2 12799.5 2455686.94270(3) -17.4 II 2 13077 2455717.57146(1) -23.5 I 3 13368 2455749.690361(6) -22.0 I This study 13377 2455750.683717(4) -23.0 I This study 13629 2455778.498061(9) -18.3 I This study 13469 2455760.83818(3) -19.6 I 2 13469.5 2455760.89340(3) -17.1 II 2 13470 2455760.89340(3) -17.1 II 2 13470 2455760.994855(1) -20.0 I 2 13488 2455762.93532(2) -17.3 I 2 13511 2455765.47387(2) -22.0 I 2 13542 2455768.89549(4) -20.0 I 2 13682 2455788.3915(1) -20.9 I 2 13682 2455783.49481(7) -25.2	11146.5	2455504.49405(1)	-30.4	II	This study
12799.5 2455686.94270(3) -17.4 II 2 13077 2455717.57146(1) -23.5 I 3 13368 2455749.690361(6) -22.0 I This study 13377 2455750.683717(4) -23.0 I This study 13629 2455778.498061(9) -18.3 I This study 13469 2455760.83818(3) -19.6 I 2 13469.5 2455760.89340(3) -17.1 II 2 13470 2455760.994855(1) -20.0 I 2 13488 2455762.93532(2) -17.3 I 2 13511 2455765.47387(2) -22.0 I 2 13542 2455768.89549(4) -20.0 I 2 13632 2455778.2915(1) -20.9 I 2 13682 2455784.34781(7) -25.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455800.36521(2) -19.2		, ,			
13077 2455717.57146(1) -23.5 I 3 13368 2455749.690361(6) -22.0 I This study 13377 2455750.683717(4) -23.0 I This study 13629 2455778.498061(9) -18.3 I This study 13469 2455760.83818(3) -19.6 I 2 13470 2455760.89340(3) -17.1 II 2 13488 2455762.93532(2) -17.3 I 2 13511 2455765.47387(2) -22.0 I 2 13542 2455768.89549(4) -20.0 I 2 13632 2455778.82915(1) -20.9 I 2 13682 2455788.34781(7) -25.2 I 2 13682 2455784.34781(7) -25.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455800.35217(2) -16.5 I 2 13846 2455802.3493(2) -20.5		, ,			
13368 2455749.690361(6) -22.0 I This study 13377 2455750.683717(4) -23.0 I This study 13629 2455778.498061(9) -18.3 I This study 13469 2455760.83818(3) -19.6 I 2 13469.5 2455760.89340(3) -17.1 II 2 13470 2455760.94855(1) -20.0 I 2 13488 2455762.93532(2) -17.3 I 2 13511 2455765.47387(2) -22.0 I 2 13542 2455768.89549(4) -20.0 I 2 13632 2455778.82915(1) -20.9 I 2 13682 2455788.34781(7) -25.2 I 2 13682 2455783.84006(1) -19.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455802.33887(5) -19.4 I 2 13846 2455802.34932(2) -20.5					
13377 2455750.683717(4) -23.0 I This study 13629 2455778.498061(9) -18.3 I This study 13469 2455760.83818(3) -19.6 I 2 13469.5 2455760.89340(3) -17.1 II 2 13470 2455760.94855(1) -20.0 I 2 13488 2455762.93532(2) -17.3 I 2 13511 2455765.47387(2) -22.0 I 2 13542 2455768.89549(4) -20.0 I 2 13632 2455778.82915(1) -20.9 I 2 13682 2455784.34781(7) -25.2 I 2 13768 2455793.84006(1) -19.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455802.33887(5) -19.4 I 2 13846 2455802.3492(2) -21.5 I 2 13872 2455805.31896(2) -20.5 I </td <td></td> <td>* *</td> <td></td> <td></td> <td></td>		* *			
13629 2455778.498061(9) -18.3 I This study 13469 2455760.83818(3) -19.6 I 2 13469.5 2455760.89340(3) -17.1 II 2 13470 2455760.94855(1) -20.0 I 2 13488 2455762.93532(2) -17.3 I 2 13511 2455765.47387(2) -22.0 I 2 13542 2455768.89549(4) -20.0 I 2 13632 2455778.82915(1) -20.9 I 2 13682 2455784.34781(7) -25.2 I 2 13768 2455793.84006(1) -19.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455800.3887(5) -19.2 I 2 13845 2455802.3492(2) -19.4 I 2 13872 2455805.31896(2) -20.5 I 2 13873 2455805.42932(2) -21.5 I					•
13469 2455760.83818(3) -19.6 I 2 13469.5 2455760.89340(3) -17.1 II 2 13470 2455760.94855(1) -20.0 I 2 13488 2455762.93532(2) -17.3 I 2 13511 2455765.47387(2) -22.0 I 2 13542 2455768.89549(4) -20.0 I 2 13632 2455778.82915(1) -20.9 I 2 13682 2455784.34781(7) -25.2 I 2 13768 2455793.84006(1) -19.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455800.35217(2) -16.5 I 2 13845 2455802.33887(5) -19.4 I 2 13872 2455805.31896(2) -20.5 I 2 13873 2455805.42932(2) -21.5 I 2 13873 2455805.42930(2) -18.0 I 3 </td <td></td> <td>` '</td> <td></td> <td></td> <td>•</td>		` '			•
13470 2455760.94855(1) -20.0 I 2 13488 2455762.93532(2) -17.3 I 2 13511 2455765.47387(2) -22.0 I 2 13542 2455768.89549(4) -20.0 I 2 13632 2455778.82915(1) -20.9 I 2 13682 2455784.34781(7) -25.2 I 2 13768 2455793.84006(1) -19.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455800.35217(2) -16.5 I 2 13828 2455800.35217(2) -19.2 I 2 13845 2455802.33887(5) -19.4 I 2 13846 2455802.34920(4) -23.4 I 2 13872 2455805.31896(2) -20.5 I 2 13873 2455805.42932(2) -21.5 I 2 13889 2455808.29907(2) -20.2 I 2					•
13488 2455762.93532(2) -17.3 I 2 13511 2455765.47387(2) -22.0 I 2 13542 2455768.89549(4) -20.0 I 2 13632 2455778.82915(1) -20.9 I 2 13682 2455778.82915(1) -20.9 I 2 13682 2455784.34781(7) -25.2 I 2 13768 2455793.84006(1) -19.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455800.35217(2) -16.5 I 2 13828 2455800.35217(2) -19.2 I 2 13845 2455800.33887(5) -19.4 I 2 13846 2455802.344920(4) -23.4 I 2 13872 2455805.31896(2) -20.5 I 2 13873 2455805.42932(2) -21.5 I 2 13899 2455808.29907(2) -20.2 I 2 <td>13469.5</td> <td>2455760.89340(3)</td> <td>-17.1</td> <td>II</td> <td>2</td>	13469.5	2455760.89340(3)	-17.1	II	2
13511 2455765.47387(2) -22.0 I 2 13542 2455768.89549(4) -20.0 I 2 13632 2455778.82915(1) -20.9 I 2 13682 2455784.34781(7) -25.2 I 2 13768 2455789.384006(1) -19.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455800.33887(5) -19.2 I 2 13845 2455802.33887(5) -19.4 I 2 13846 2455802.33887(5) -19.4 I 2 13872 2455802.34920(4) -23.4 I 2 13873 2455805.31896(2) -20.5 I 2 13889 2455805.42932(2) -21.5 I 2 14062 2455829.27017(2) -18.0 I 3 14089 2455861.27873(2) -14.6 I 3 14397 2455863.26542(3) -18.5 I 3 <td>13470</td> <td>2455760.94855(1)</td> <td>-20.0</td> <td>I</td> <td>2</td>	13470	2455760.94855(1)	-20.0	I	2
13542 2455768.89549(4) -20.0 I 2 13632 2455778.82915(1) -20.9 I 2 13682 2455784.34781(7) -25.2 I 2 13768 2455793.84006(1) -19.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455800.46251(2) -19.2 I 2 13845 2455802.33887(5) -19.4 I 2 13846 2455802.44920(4) -23.4 I 2 13872 2455805.31896(2) -20.5 I 2 13873 2455805.42932(2) -21.5 I 2 13899 2455808.29907(2) -20.2 I 2 14062 2455826.29008(2) -18.0 I 3 14089 2455862.27873(2) -14.6 I 3 14397 2455863.26542(3) -18.5 I 3 14400 2455863.26542(3) -18.5 I 3					
13632 2455778.82915(1) -20.9 I 2 13682 2455784.34781(7) -25.2 I 2 13768 2455793.84006(1) -19.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455800.46251(2) -19.2 I 2 13845 2455802.33887(5) -19.4 I 2 13846 2455802.44920(4) -23.4 I 2 13872 2455805.31896(2) -20.5 I 2 13873 2455805.42932(2) -21.5 I 2 13899 2455808.29907(2) -20.2 I 2 14062 2455826.29008(2) -18.0 I 3 14089 2455829.27017(2) -19.1 I 3 14379 2455863.26542(3) -18.5 I 3 14400 2455863.26542(3) -18.5 I 3 14406 2455864.25879(3) -18.3 I 3		` '			
13682 2455784.34781(7) -25.2 I 2 13768 2455793.84006(1) -19.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455800.46251(2) -19.2 I 2 13845 2455802.33887(5) -19.4 I 2 13846 2455802.44920(4) -23.4 I 2 13872 2455805.31896(2) -20.5 I 2 13873 2455805.42932(2) -21.5 I 2 13899 2455808.29907(2) -20.2 I 2 14062 2455826.29008(2) -18.0 I 3 14089 2455829.27017(2) -19.1 I 3 14379 2455863.26542(3) -18.5 I 3 14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This		, ,			
13768 2455793.84006(1) -19.2 I 2 13827 2455800.35217(2) -16.5 I 2 13828 2455800.46251(2) -19.2 I 2 13845 2455802.33887(5) -19.4 I 2 13846 2455802.44920(4) -23.4 I 2 13872 2455805.31896(2) -20.5 I 2 13873 2455805.42932(2) -21.5 I 2 13899 2455808.29907(2) -20.2 I 2 14062 2455826.29008(2) -18.0 I 3 14089 2455829.27017(2) -19.1 I 3 14379 2455863.26542(3) -18.5 I 3 14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study					
13827 2455800.35217(2) -16.5 I 2 13828 2455800.46251(2) -19.2 I 2 13845 2455802.33887(5) -19.4 I 2 13846 2455802.44920(4) -23.4 I 2 13872 2455805.31896(2) -20.5 I 2 13873 2455805.42932(2) -21.5 I 2 13899 2455808.29907(2) -20.2 I 2 14062 2455826.29008(2) -18.0 I 3 14089 2455829.27017(2) -19.1 I 3 14379 2455863.26542(3) -18.5 I 3 14397 2455863.596542(3) -18.5 I 3 14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study					
13828 2455800.46251(2) -19.2 I 2 13845 2455802.33887(5) -19.4 I 2 13846 2455802.44920(4) -23.4 I 2 13872 2455805.31896(2) -20.5 I 2 13873 2455805.42932(2) -21.5 I 2 13899 2455808.29907(2) -20.2 I 2 14062 2455826.29008(2) -18.0 I 3 14089 2455829.27017(2) -19.1 I 3 14379 2455861.27873(2) -14.6 I 3 14397 2455863.26542(3) -18.5 I 3 14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study		* *			
13845 2455802.33887(5) -19.4 I 2 13846 2455802.44920(4) -23.4 I 2 13872 2455805.31896(2) -20.5 I 2 13873 2455805.42932(2) -21.5 I 2 13899 2455808.29907(2) -20.2 I 2 14062 2455826.29008(2) -18.0 I 3 14089 2455826.27017(2) -19.1 I 3 14379 2455861.27873(2) -14.6 I 3 14397 2455863.26542(3) -18.5 I 3 14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study					
13872 2455805.31896(2) -20.5 I 2 13873 2455805.42932(2) -21.5 I 2 13899 2455808.29907(2) -20.2 I 2 14062 2455826.29008(2) -18.0 I 3 14089 2455829.27017(2) -19.1 I 3 14379 2455861.27873(2) -14.6 I 3 14397 2455863.26542(3) -18.5 I 3 14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study		, ,			
13873 2455805.42932(2) -21.5 I 2 13899 2455808.29907(2) -20.2 I 2 14062 2455826.29008(2) -18.0 I 3 14089 2455829.27017(2) -19.1 I 3 14379 2455861.27873(2) -14.6 I 3 14397 2455863.26542(3) -18.5 I 3 14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study	13846	2455802.44920(4)	-23.4		
13899 2455808.29907(2) -20.2 I 2 14062 2455826.29008(2) -18.0 I 3 14089 2455829.27017(2) -19.1 I 3 14379 2455861.27873(2) -14.6 I 3 14397 2455863.26542(3) -18.5 I 3 14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study		* *			
14062 2455826.29008(2) -18.0 I 3 14089 2455829.27017(2) -19.1 I 3 14379 2455861.27873(2) -14.6 I 3 14397 2455863.26542(3) -18.5 I 3 14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study		, ,			
14089 2455829.27017(2) -19.1 I 3 14379 2455861.27873(2) -14.6 I 3 14397 2455863.26542(3) -18.5 I 3 14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study		, ,			
14379 2455861.27873(2) -14.6 I 3 14397 2455863.26542(3) -18.5 I 3 14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study					
14397 2455863.26542(3) -18.5 I 3 14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study		, ,			
14400 2455863.59656(1) -17.1 I 2 14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study		, ,			
14406 2455864.25879(3) -18.3 I 3 16024 2456042.844216(4) -16.4 I This study					
16024 2456042.844216(4) -16.4 I This study					
					This study
	16350	2456078.826240(8)	-14.4	I	This study
17019 2456152.666554(6) -12.6 I This study	17019	2456152.666554(6)	-12.6	I	This study

References. (1) Wils et al. 2007; (2) Beuermann et al. 2012b; (3) Kilkenny & Koen 2012.

 Table 4

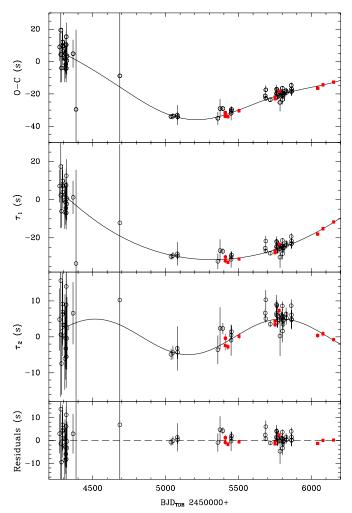
 Parameters for the Linear Plus Two-LTT Ephemeris of NSVS 1425

	Linear Ephemeris	
Parameter	Value	Unit
$\overline{P_{\mathrm{bin}}}$	0.1103741681(5)	days
T_0	2454274.20874(4)	BJD(TDB)
	$ au_1$ term	
Parameter	Value	Unit
\overline{P}	6.86 ± 0.45	years
T	2456643 ± 110	BJD(TDB)
$a_{\rm bin} \sin i$	0.042 ± 0.006	AU
e	0.52 ± 0.08	
ω	98 ± 9	deg
f(M)	$(1.6 \pm 1.1) \times 10^{-6}$	M_{\odot}
$M \sin i$	8.0 ± 1.5	$M_{ m Jupiter}$
$a \sin i$	2.9 ± 0.7	AU
	τ_2 term	
Parameter	Value	Unit
P	3.49 ± 0.38	years
T	2455515 ± 95	BJD(TDB)
$a_{\rm bin} \sin i$	0.0099 ± 0.0006	AU
e	0.00 ± 0.08	
ω	11 ± 8	deg
f(M)	$(8.0 \pm 4.0) \times 10^{-8}$	M_{\odot}
$M \sin i$	2.9 ± 0.4	$M_{ m Jupiter}$
$a \sin i$	1.9 ± 0.8	AU
$\chi^2_{\rm red}$	1.85	

used the following equation:

$$T_{\min} = T_0 + E \times P_{\min} + \sum_{n=1}^{n} \tau_j,$$
 (3)

where


$$\tau_j = \frac{z_j}{c} = K_j \left[\frac{1 - e_j^2}{1 + e_j \cos f_j} \sin(f_j + \omega_j) \right]$$
 (4)

is the LTT effect. In the last equation, $K_j = a_j \sin i_j/c$ is the time semi-amplitude, e_j is the eccentricity, ω_j is the argument of periastron, and f_j is the true anomaly. These parameters are relative to the orbit of the inner binary center of mass around the common center of mass consisting of the inner binary and of the *j*th planet. The parameters a_j , i_j , and c in the semi-amplitude equation are the semi-major axis, the inclination, and the speed of light, respectively. Note that we do not consider mutual interaction between external bodies in this analysis.

Initially we fitted Equation (3) to the data with only one LTT effect. The resulting $\chi^2_{\rm red}$ dropped to 6.8, but the new residuals showed evidence of another cyclic variation. Adding one more LTT effect in Equation (3), the resulting $\chi^2_{\rm red}$ improves to 1.85. The PIKAIA algorithm was used to search for the global optimal solution, followed by an MCMC procedure to sample the parameters of Equation (3) around the best solution. Figure 3 shows the resulting (O-C) diagram and Table 4 shows the best-fit parameters with the associated $\pm 68\%$ uncertainties.

4. DISCUSSION AND CONCLUSION

We revisited the orbital period variation of the post-CE binary NSVS 1425 adding the 10 new mid-eclipse times

Figure 3. Upper panel shows the (O-C) diagram of the eclipse times of NSVS 1425 made with respect to the linear part of the ephemeris in Equation (3). Our data are presented with filled squares and the solid line represents the best fit including the two LTT effects. The second and third panels display separately the two LTT effects (τ_1 and τ_2). The lower panel shows the residuals around the combined fit.

(A color version of this figure is available in the online journal.)

obtained as described in previous sections. The complex orbital period variation, illustrated by the (O-C) diagram, can be mathematically described by the LTT effect of two circumbinary objects. The amplitudes of the LTT effects are $\sim 20 \, \mathrm{s}$ and $\sim 5 \, \mathrm{s}$. The associated orbital periods correspond to $\sim 6.9 \, \mathrm{and}$ $\sim 3.5 \, \mathrm{years}$, respectively. This solution is a good description for the orbital period variation, as shown by Figure 3. But it raises some concerns, which are discussed below.

The time baseline of NSVS 1425 covers about 5.5 years. One of the two LTT effects has a period of \sim 7 years, larger than the baseline making the obtained solution less robust. Moreover, the early points have large error bars and hence constrain the LTT effect less. In this regard, it is useful to recall the case of HW Vir. It is a similar system, which also presents a complex (O-C) diagram. Kilkenny et al. (2003), based on a data set spread over almost 20 years, proposed the presence of a brown dwarf around the central binary. A few years later, a solution considering two objects was presented by Lee et al. (2009). Recently, Horner et al. (2012) claimed a still different solution, more stable dynamically. This illustrates how new data can change an LTT effect solution. Therefore, the

LTT solution derived for NSVS 1425 should be considered as a preliminary one.

We now discuss the implications of the presence of two circumbinary objects in NSVS 1425. Using the close binary mass $M_{\rm bin}=0.528\,M_{\odot}$ (Almeida et al. 2012), the lower mass limit for the two circumbinary bodies are $M_c \sin i_c \sim 2.9\,M_{\rm Jupiter}$ (inner body) and $M_d \sin i_d \sim 8.0\,M_{\rm Jupiter}$ (external body). Assuming an orbital inclination of 82°.5 (Almeida et al. 2012) and coplanarity between the two external bodies and the inner binary, NSVS 1425 c and NSVS 1425 d would both be giant planets with $M_c \sim 2.9\,M_{\rm Jupiter}$ and $M_d \sim 8.1\,M_{\rm Jupiter}$.

Considering NSVS 1425 with two circumbinary planets, this system would be the eighth post-CE system with planets and the fourth system with two planets (see Table 1). In such systems, there are two principal scenarios for planetary formation: (1) first generation planets formed in a circumbinary protoplanetary disk and (2) second generation planets originated from a disk formed by the ejected envelope (van Winckel et al. 2009; Perets 2011).

In the first scenario, could the two circumbinary planets in NSVS 1425 survive the CE phase? Bear & Soker (2011) estimated the orbital separation between the progenitor of an extreme horizontal branch (EHB) star (sdB or sdOB) and a planet before the CE phase by the equation $a_0 \simeq M_{\rm EHB} a_{\rm EHB}/M_{\rm pro}$, where $M_{\rm EHB}$ is the mass of the sdOB star and $a_{\rm EHB}$ is the present orbital separation of the planet. Assuming that the progenitor of the sdOB star in NSVS 1425 had a mass of $M_{\rm pro} = 1.0 \, M_{\odot}$, and neglecting accretion by the companion, the orbital separation of the planets before the CE would be $a_{0c} \simeq 0.8 \,\mathrm{AU}$ and $a_{0d} \simeq 1.3$ AU. For a single star, Han et al. (2002) pointed out that the maximum radius at the tip of the EHB $(R_{\rm EHB})$ is \sim 0.8 AU. Hence, the inner planet is on the verge of being engulfed by the CE. Moreover, the tidal interaction causes a planet to spiral inward if its orbital radius is smaller than $a_0 \lesssim 3 R_{\rm EHB}$ (Villaver & Livio 2007). Therefore, the two circumbinary bodies in NSVS 1425 would not survive the CE phase. On the other hand, Taam & Ricker (2010) showed that the CE size can be much reduced if the EHB star is part of a binary system, because once the secondary is engulfed by the envelope, the CE is totally ejected in only $\sim 10^3$ days, stopping the envelope expansion. Therefore, the maximum radius of the CE is around the initial distance between the close binary components. Thus, if the close binary separation in NSVS 1425 before the CE phase was ≤ 0.27 AU, the two planets could survive the CE phase.

For the second scenario, the principal question to investigate is: was there time enough after the CE phase to form giant planets? Kley (1999) showed that the typical timescale to form giant planets in protostellar disks is $\sim 10^6$ years. The lifetime of a binary in the EHB phase is $\sim 10^8$ years (Dorman et al. 1993; Heber 2009). As the NSVS 1425 primary star is in the post-EHB phase (Almeida et al. 2012), we conclude that there

was time enough to form the two circumbinary planets after the CE phase. Therefore, the second generation of planets is also a viable scenario for NSVS 1425.

Finally, among all known candidates to be circumbinary planets in post-CE systems, the inner planet in NSVS 1425 has the minimum binary–planet separation, $a_c \sin i_c \sim 1.9$ AU.

This study was partially supported by CAPES (LAA), CNPq (CVR: 308005/2009-0), and Fapesp (CVR: 2010/01584-8). We acknowledge the use of the SIMBAD database, operated at CDS, Strasbourg, France; the NASA's Astrophysics Data System Service; and the NASA's *SkyView* facility (http://skyview.gsfc.nasa.gov) located at NASA Goddard Space Flight Center. The authors acknowledge the referee, Dr. David Kilkenny, for his comments and suggestions to improve this paper.

REFERENCES

```
Almeida, L. A., Jablonski, F., Tello, J., & Rodrigues, C. V. 2012, MNRAS,
  423, 478
Backer, D. C., Foster, R. S., & Sallmen, S. 1993, Natur, 365, 817
Bear, E., & Soker, N. 2011, MNRAS, 411, 1792
Beuermann, K., Breitenstein, P., Bski, B. D., et al. 2012a, A&A, 540, A8
Beuermann, K., Buhlmann, J., Diese, J., et al. 2011, A&A, 526, A53
Beuermann, K., Dreizler, S., Hessman, F. V., & Deller, J. 2012b, A&A,
Charbonneau, P. 1995, ApJS, 101, 309
Dorman, B., Rood, R. T., & O'Connell, R. W. 1993, ApJ, 419, 596
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. E. 1996, Markov Chain
  Monte Carlo in Practice (London: Chapman and Hall)
Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R., & Ivanova, N.
  2002, MNRAS, 336, 449
Heber, U. 2009, ARA&A, 47, 211
Hinse, T. C., Lee, J. W., Goździewski, K., et al. 2012, MNRAS, 420, 3609
Horner, J., Wittenmyer, R. A., Hinse, T. C., & Tinney, C. G. 2012, MNRAS,
  425, 749
Irwin, J. B. 1952, ApJ, 116, 211
Kilkenny, D., & Koen, C. 2012, MNRAS, 421, 3238
Kilkenny, D., van Wyk, F., & Marang, F. 2003, Obs, 123, 31
Kley, W. 1999, MNRAS, 303, 696
Lee, J. W., Kim, S.-L., Kim, C.-H., et al. 2009, AJ, 137, 3181
Moriwaki, K., & Nakagawa, Y. 2004, ApJ, 609, 1065
Perets, H. B. 2011, in AIP Conf. Ser. 1331, Planetary Systems Beyond the Main
  Sequence, ed. S. Schuh, H. Drechsel, & U. Heber (Melville, NY: AIP), 56
Potter, S. B., Romero-Colmenero, E., Ramsay, G., et al. 2011, MNRAS, 416,
Qian, S.-B., Liu, L., Zhu, L.-Y., et al. 2012a, MNRAS, 422, L24
Qian, S.-B., Zhu, L.-Y., Dai, Z.-B., et al. 2012b, ApJL, 745, L23
Quintana, E. V., & Lissauer, J. J. 2006, Icar, 185, 1
Taam, R. E., & Ricker, P. M. 2010, NewAR, 54, 65
Tody, D. 1993, in ASP Conf. Ser. 52, Astronomical Data Analysis Software
  and Systems II, ed. R. J. Hanisch, R. J. V. Brissenden, & J. Barnes (San
  Francisco, CA: ASP), 173
van Winckel, H., Lloyd Evans, T., Briquet, M., et al. 2009, A&A, 505, 1221
Villaver, E., & Livio, M. 2007, ApJ, 661, 1192
Wils, P., di Scala, G., & Otero, S. A. 2007, IBVS, 5800, 1
Wilson, R. E., & Devinney, E. J. 1971, ApJ, 166, 605
Woźniak, P. R., Williams, S. J., Vestrand, W. T., & Gupta, V. 2004, AJ,
   128, 2965
```